import numpy as np import matplotlib.pyplot as plt def get_data(filename): file = open(filename) lines = file.readlines() x = [] y = [] for i in range(len(lines)): if i % 2 == 0: lines[i].strip() data = lines[i].split() x.append(float(data[0])) y.append(float(data[1])) return x, y time, power = get_data('Drone Comparison Data for Dan/required_power.txt') time1, e_power = get_data('Drone Comparison Data for Dan/engine_power.txt') time2, hb_power = get_data('Drone Comparison Data for Dan/hybrid_battery_power.txt') time3, bo_power = get_data('Drone Comparison Data for Dan/battery_only_power.txt') time4, hb_soc_small = get_data('Drone Comparison Data for Dan/hybrid_SOC.txt') time5, bo_soc_small = get_data('Drone Comparison Data for Dan/battery_only_SOC.txt') hb_soc =[] bo_soc = [] for data in hb_soc_small: hb_soc.append(data*100) for data in bo_soc_small: bo_soc.append(data*100) # Basic Styling plt.rcParams.update({ 'font.family': 'Courier New', # monospace font 'font.size': 20, # Fonts 'axes.titlesize': 20, # | 'axes.labelsize': 15, # V 'xtick.labelsize': 15, 'ytick.labelsize': 15, 'legend.fontsize': 15, 'figure.titlesize': 20, 'figure.figsize': [10,10] # Figure Size }) # Figure Setup fig, ax = plt.subplots(3, 1, gridspec_kw={'height_ratios': [3, 2, 2]}) title = 'Power Output vs Time' # Title # fig.suptitle(title, y=0.95) #pad controls distance to plot ### Figure 1 (top) ### x_1_title = 'Jetfire Hybrid System Power Output' ax[0].set_title(x_1_title) x_1_lab = 'Time [min]' # X Label y_1_lab = 'Power [kW]' # Y Label ax[0].set_xlabel(x_1_lab) ax[0].set_ylabel(y_1_lab) ax[0].spines['top'].set_visible(False) # Controls non axis borders ax[0].spines['right'].set_visible(False) ax[0].spines['bottom'].set_visible(False) ### Figure 2 (middle) ### x_2_title = 'Electric System Power Output' ax[1].set_title(x_2_title) x_2_lab = 'Time [min]' # X Label y_2_lab = 'Power [kW]' # Y Label ax[1].set_xlabel(x_2_lab) ax[1].set_ylabel(y_2_lab) ax[1].spines['top'].set_visible(False) # Controls non axis borders ax[1].spines['right'].set_visible(False) ### Figure 3 (middle) ### x_3_title = 'State of Charge' ax[2].set_title(x_3_title) x_3_lab = 'Time [min]' # X Label y_3_lab = 'Charge [%]' # Y Label ax[2].set_xlabel(x_3_lab) ax[2].set_ylabel(y_3_lab) ax[2].spines['top'].set_visible(False) # Controls non axis borders ax[2].spines['right'].set_visible(False) ### axis is the same for both graphs ### ### x displays on bottom graph only ### x_1_min = 0 # Axis Limits and Ticks x_1_max = 95 x_1_step_maj = 10 #steps not division x_1_step_min = 1 ax[0].set_xlim(x_1_min,x_1_max) # X limits ax[0].set_xticks(np.arange(x_1_min,x_1_max,x_1_step_maj)) # X Major Ticks # ax[1].set_xticks([-180,-90,0,90,180], minor=True) # X Minor Ticks x_2_min = 0 # Axis Limits and Ticks x_2_max = 9.5 x_2_step_maj = 1 #steps not division x_2_step_min = 1 ax[1].set_xlim(x_2_min,x_2_max) # X limits ax[1].set_xticks(np.arange(x_2_min,x_2_max,x_2_step_maj)) # X Major Ticks # ax[1].set_xticks([-180,-90,0,90,180], minor=True) # X Minor Ticks x_3_min = 0 # Axis Limits and Ticks x_3_max = 95 x_3_step_maj = 10 #steps not division x_3_step_min = 1 ax[2].set_xlim(x_3_min,x_3_max) # X limits ax[2].set_xticks(np.arange(x_3_min,x_3_max,x_3_step_maj)) # X Major Ticks # ax[1].set_xticks([-180,-90,0,90,180], minor=True) # X Minor Ticks ### Figure 1 (top) ### y_1_min = -5 y_1_max = 17 y_1_step_maj = 5 y_1_step_min = 1 ax[0].set_ylim(y_1_min,y_1_max) # Y limits ax[0].set_yticks(np.arange(y_1_min,y_1_max,y_1_step_maj)) # Y Major Ticks # ax.set_yticks(np.arange(y_min,y_max,y_step_min),minor=True) # Y Minor Ticks ax[0].grid(True, which='major',alpha=0.5) # Turn On Major Grid # ax[0].grid(True, which='minor',alpha=0.2) # Turn on Minor Grid # alpha controls transparency ### Figure 2 (bottom) ### y_2_min = 0 y_2_max = 17 y_2_step_maj = 5 y_2_step_min = 1 ax[1].set_ylim(y_2_min,y_2_max) # Y limits ax[1].set_yticks(np.arange(y_2_min,y_2_max,y_2_step_maj)) # Y Major Ticks # ax[1].set_yticks(np.arange(y_2_min,y_2_max,y_2_step_min),minor=True) # Y Minor Ticks ax[1].grid(True, which='major',alpha=0.5) # Turn On Major Grid # ax[1].grid(True, which='minor',alpha=0.2) # Turn on Minor Grid # alpha controls transparency y_3_min = 0 y_3_max = 110 y_3_step_maj = 25 y_3_step_min = 1 ax[2].set_ylim(y_3_min,y_3_max) # Y limits ax[2].set_yticks(np.arange(y_3_min,y_3_max,y_3_step_maj)) # Y Major Ticks # ax[1].set_yticks(np.arange(y_2_min,y_2_max,y_2_step_min),minor=True) # Y Minor Ticks ax[2].grid(True, which='major',alpha=0.5) # Turn On Major Grid # ax[1].grid(True, which='minor',alpha=0.2) # Turn on Minor Grid # alpha controls transparency ###################### Single Line ###################### ''' # x = [] # y = [] ax.plot(x,y,color='black',linestyle='-',linewidth='1') # Basic Line Styles: -, --, :, -. # Basic Colors: red, blue, green, purple, cyan, magenta, black, brown, etc # Can Specify Hex code for colors # ax.scatter(x,y,color='black',marker='o',size=20) # # Many Markers: circle-'o', square-'s', triangle-'^',star-'*', x-'x' # plt.show() ''' ###################### Stacked Line ###################### x1 = [time, time1, time2,[71.5,71.5],[0,95]] # List of Lists y1 = [power, e_power, hb_power,[-2,10],[0,0]] # List of Lists dl1 = ['Total Power','Jetfire Engine','Electric Motor','Fuel Runs Out',''] # Data Labels (list) lc1 = ["#A30F48","#1db9be","#0C53AF",'black','black'] # Line Color | ls1 = ['-','-','-',':','-'] # Line Style | lw1 = [2,2,2,1.5,1] # Line Width V a1 = [1,1,1,1,1] # Transparency for i in range(len(x1)): ax[0].plot(x1[i],y1[i],label=dl1[i],color=lc1[i],linestyle=ls1[i],linewidth=lw1[i], alpha=a1[i]) ax[0].legend(loc='center', bbox_to_anchor=(0.6,0.8), ncol=2, frameon=True,edgecolor='white',framealpha=1, labelspacing=0.2, columnspacing=0.75,handlelength=0.9, handletextpad=0.3) # anchor loc is based on the plot area, 0.5 is half the width, 1.01 is just above the top # labelspacing is for vertical spacing, column is for horizontal, handel is for line length, textpad is for handl eto text x2 = [time3] # List of Lists y2 = [bo_power] # List of Lists dl2 = ['Electric Motor'] # Data Labels (list) lc2 = ['#008349'] # Line Color | ls2 = ['-'] # Line Style | lw2 = [2] # Line Width V a2 = [1] # Transparency for i in range(len(x2)): ax[1].plot(x2[i],y2[i],label=dl2[i],color=lc2[i],linestyle=ls2[i],linewidth=lw2[i], alpha=a2[i]) # ax[1].fill_between(x_temp,y_temp,hatch='///', alpha=0) # ax[1].legend(loc='center', bbox_to_anchor=(0.8,0.8), ncol=1, frameon=True,edgecolor='white',framealpha=1, labelspacing=0.2, columnspacing=0.75,handlelength=0.9, handletextpad=0.3) # anchor loc is based on the plot area, 0.5 is half the width, 1.01 is just above the top # labelspacing is for vertical spacing, column is for horizontal, handel is for line length, textpad is for handl eto text x3 = [time4, time5] # List of Lists y3 = [hb_soc, bo_soc] # List of Lists dl3 = ['Hybrid', 'Electric'] # Data Labels (list) lc3 = ["#1db9be","#0C53AF"] # Line Color | ls3 = ['-','-'] # Line Style | lw3 = [2,2] # Line Width V a3 = [1,1] # Transparency for i in range(len(x3)): ax[2].plot(x3[i],y3[i],label=dl3[i],color=lc3[i],linestyle=ls3[i],linewidth=lw3[i], alpha=a3[i]) ax[2].legend(loc='center', bbox_to_anchor=(0.65,0.45), ncol=2, frameon=True,edgecolor='white',framealpha=1, labelspacing=0.2, columnspacing=0.75,handlelength=0.9, handletextpad=0.3) plt.tight_layout() plt.show()